Partitioning edge-coloured complete graphs into monochromatic cycles and paths
نویسنده
چکیده
A conjecture of Erdős, Gyárfás, and Pyber says that in any edge-colouring of a complete graph with r colours, it is possible to cover all the vertices with r vertexdisjoint monochromatic cycles. So far, this conjecture has been proven only for r = 2. In this paper we show that in fact this conjecture is false for all r ≥ 3. In contrast to this, we show that in any edge-colouring of a complete graph with three colours, it is possible to cover all the vertices with three vertex-disjoint monochromatic paths, proving a particular case of a conjecture due to Gyárfás. As an intermediate result we show that in any edge-colouring of the complete graph with the colours red and blue, it is possible to cover all the vertices with a red path, and a disjoint blue balanced complete bipartite graph.
منابع مشابه
Partitioning two-coloured complete multipartite graphs into monochromatic paths
We show that any complete k-partite graph G on n vertices, with k ≥ 3, whose edges are two-coloured, can be covered by two vertex-disjoint monochromatic paths of distinct colours, under the necessary assumption that the largest partition class of G contains at most n/2 vertices. This extends known results for complete and complete bipartite graphs. Secondly, we show that in the same situation, ...
متن کاملPartitioning two-coloured complete multipartite graphs into monochromatic paths and cycles
We show that any complete k-partite graph G on n vertices, with k ≥ 3, whose edges are two-coloured, can be covered with two vertex-disjoint monochromatic paths of distinct colours. We prove this under the necessary assumption that the largest partition class of G contains at most n/2 vertices. This extends known results for complete and complete bipartite
متن کاملPartitioning 2-edge-colored graphs by monochromatic paths and cycles
We present results on partitioning the vertices of 2-edge-colored graphs into monochromatic paths and cycles. We prove asymptotically the two-color case of a conjecture of Sárközy: the vertex set of every 2-edge-colored graph can be partitioned into at most 2α(G) monochromatic cycles, where α(G) denotes the independence number of G. Another direction, emerged recently from a conjecture of Schel...
متن کاملPartitioning edge-2-colored graphs by monochromatic paths and cycles
We present results on partitioning the vertices of 2-edge-colored graphs into monochromatic paths and cycles. We prove asymptotically the two-color case of a conjecture of Sárközy: the vertex set of every 2-edge-colored graph can be partitioned into at most 2α(G) monochromatic cycles, where α(G) denotes the independence number of G. Another direction, emerged recently from a conjecture of Schel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electronic Notes in Discrete Mathematics
دوره 43 شماره
صفحات -
تاریخ انتشار 2013