Partitioning edge-coloured complete graphs into monochromatic cycles and paths

نویسنده

  • Alexey Pokrovskiy
چکیده

A conjecture of Erdős, Gyárfás, and Pyber says that in any edge-colouring of a complete graph with r colours, it is possible to cover all the vertices with r vertexdisjoint monochromatic cycles. So far, this conjecture has been proven only for r = 2. In this paper we show that in fact this conjecture is false for all r ≥ 3. In contrast to this, we show that in any edge-colouring of a complete graph with three colours, it is possible to cover all the vertices with three vertex-disjoint monochromatic paths, proving a particular case of a conjecture due to Gyárfás. As an intermediate result we show that in any edge-colouring of the complete graph with the colours red and blue, it is possible to cover all the vertices with a red path, and a disjoint blue balanced complete bipartite graph.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partitioning two-coloured complete multipartite graphs into monochromatic paths

We show that any complete k-partite graph G on n vertices, with k ≥ 3, whose edges are two-coloured, can be covered by two vertex-disjoint monochromatic paths of distinct colours, under the necessary assumption that the largest partition class of G contains at most n/2 vertices. This extends known results for complete and complete bipartite graphs. Secondly, we show that in the same situation, ...

متن کامل

Partitioning two-coloured complete multipartite graphs into monochromatic paths and cycles

We show that any complete k-partite graph G on n vertices, with k ≥ 3, whose edges are two-coloured, can be covered with two vertex-disjoint monochromatic paths of distinct colours. We prove this under the necessary assumption that the largest partition class of G contains at most n/2 vertices. This extends known results for complete and complete bipartite

متن کامل

Partitioning 2-edge-colored graphs by monochromatic paths and cycles

We present results on partitioning the vertices of 2-edge-colored graphs into monochromatic paths and cycles. We prove asymptotically the two-color case of a conjecture of Sárközy: the vertex set of every 2-edge-colored graph can be partitioned into at most 2α(G) monochromatic cycles, where α(G) denotes the independence number of G. Another direction, emerged recently from a conjecture of Schel...

متن کامل

Partitioning edge-2-colored graphs by monochromatic paths and cycles

We present results on partitioning the vertices of 2-edge-colored graphs into monochromatic paths and cycles. We prove asymptotically the two-color case of a conjecture of Sárközy: the vertex set of every 2-edge-colored graph can be partitioned into at most 2α(G) monochromatic cycles, where α(G) denotes the independence number of G. Another direction, emerged recently from a conjecture of Schel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electronic Notes in Discrete Mathematics

دوره 43  شماره 

صفحات  -

تاریخ انتشار 2013